

B: Organic Chemistry

Paper II - Physical and organic Chemistry B.Sc. Part I (Honours)

By Sonu Ram Shankar Assistant Professor Department of Chemistry

Marwari College, Darbhanga

A constituent Unit of Lalit Narayan Mithila University, Kameshwar Nagar, Darbhanga

Substitution

When a group is replaced with another group.

Substitution Reaction are two types: Nucleophilic and electrophilic

Nucleophilic:

When nucleophilic reagents bring out the reaction.

There are two types of substitution reaction based on molecularity: $S_N 2$ and $S_N 1$

- $S_{\rm N}{\rm 2}$, (Substitution nucleophilic bimolecular): One step concerted reaction $S_{\rm N}{\rm 1}$, (Substitution nucleophilic unimolecular): Two step reaction
- **S**_N**1, (Substitution nucleophilic unimolecular):** Two step reaction First step: Slow formation of carbonium ion, unimolecular, rate determining Second step: Fast combination of carbanion ion and nucleophile

Table 1: Comparison of S_N^2 and S_N^1 reaction

Factor		S _N 2	S _N 1
Order	Reactants in comparable concentration	2 nd	1 st
	One reactant in excess	1 st	1 st
	concentration		
Stereochemistry		Inversion	Inversion,
			retention, or
			racemization
Rearrangement		No	Possible
Rate constant dependency	With substrate	On nucleophile	
	With nucleophile	On leaving group	

Mechanism:

 $\mathbf{S_{N}2} \qquad \qquad \mathbf{Y}^{-} + \mathbf{R} - \mathbf{X} \rightarrow \qquad \mathbf{Y}^{\delta^{-}} - \cdots - \mathbf{R}^{-----} \mathbf{X}^{\delta^{-}} \rightarrow \qquad \mathbf{Y} - \mathbf{X}$

Transition state: Y^{δ} ----- R^{δ} ; Carbonium: Pentavalent C⁺

Intermediate; R⁺; Carbenium: Traivalent C⁺

Intermediate can be isolated: ph₃C⁺ ClO₄⁻/ BF₄⁻, CH₃C⁺ SbF₆⁻

Variation:

S_N2(C⁺) Mechanism: If step 2 in S_N1 is slower than step 1

Example:

Step 1: $Ar_2CHOH + H^+ \rightarrow Ar_2CHOH_2^+ \rightarrow Ar_2C^+ + H_2O$

Step 2: $Ar_2CH^+ + ArH \rightarrow Ar_2CHAr$

Effect of substitution:

p-methyl benzylchloride \rightarrow p-methyl benzyl cation p-Nitro benzylchloride \rightarrow p-nitro benzyl cation Slow; due to -I effect